Já sabemos como descrever o movimento ao longo de retas (1D). E outros movimentos?
ax = plt.axes()
r = vector2D(dxdy=[0.6, 0.4], label=r'$\vec{r}$')
r.plot(ax)
r.plot_label(ax, relative_position=0.45, distance=-0.1)
plot([0,0.6],[0, 0.4], 'ro')
text(-0.03, 0.1, 'A')
text(0.57 , 0.5, 'B')
xlim(-0.1,1.1)
ylim(-0.1,1.1)
axis('off')
ax.set_aspect('equal')
ax = plt.axes()
a = vector2D(dxdy=[0.7,0.1], label=r'$\vec{a}$')
a.plot(ax); a.plot_label(ax, distance=0.05)
b = vector2D(dxdy=[0.1,0.4], label=r'$\vec{b}$')
b.origin = [0, 0.2]
b.plot(ax); b.plot_label(ax, distance=0.15)
new_origin = array([0.8, 0])
a.origin = new_origin
a.plot(ax); a.plot_label(ax, distance=0.05)
b.origin = new_origin + a.dxdy
b.plot(ax); b.plot_label(ax, distance=-0.05)
c = vector2D(dxdy=a.dxdy+b.dxdy, label=r'$\vec{a}+\vec{b}$')
c.origin = new_origin
c.plot(ax); c.plot_label(ax, relative_position=0.3, distance=0.15)
xlim(-0.1,1.6)
ylim(-0.1,1.0)
axis('off')
ax.set_aspect('equal')
ax = plt.axes()
a_dxdy = array([0.6,0.2])
a = vector2D(origin=[0,0], dxdy=a_dxdy, label=r'$\vec{a}$')
a.plot(ax); a.plot_label(ax, distance=0.05)
b = vector2D(origin=[0.7,0], dxdy=a_dxdy*1.5, label=r'$1,5\vec{a}$')
b.plot(ax); b.plot_label(ax, relative_position=0.3, distance=0.10)
c = vector2D(origin=[1.5, 1],dxdy=a_dxdy*(-2.), label=r'$-2\vec{a}$')
c.plot(ax); c.plot_label(ax, relative_position=0.6, distance=-0.1)
xlim(-0.1,1.6)
ylim(-0.1,1.6)
axis('off')
ax.set_aspect('equal')
ax = plt.axes()
ax.arrow(0,0,0.6,0.2, **vector_options)
text(0.3 , 0.15, r'$\vec{a}$')
ax.arrow(0,0.3,0.2, 0.6, **vector_options)
text(0.15 , 0.5, r'$\vec{b}$')
ax.arrow(0.5,0.9,-0.2, -0.6, **vector_options)
text(0.45 , 0.5, r'$-\vec{b}$')
ax.arrow(0.9,0.8,0.6,0.2, **vector_options)
text(1.1 , 0.95, r'$\vec{a}$')
ax.arrow(1.5,1.0,-0.2, -0.6, **vector_options)
text(1.4 , 0.6, r'$-\vec{b}$')
ax.arrow(0.9,0.8,0.4, -0.4, **vector_options)
text(0.8 , 0.4, r'$\vec{a}-\vec{b}$')
xlim(-0.1,1.6)
ylim(-0.1,1.6)
axis('off')
ax.set_aspect('equal')
avector_options = {'head_width':0.05, 'head_length':0.1, 'fc':'r', 'ec':'r', 'length_includes_head':True}
ax = plt.axes()
ax.arrow(0,0,1.0,0, **vector_options)
text(0.9, -0.1, '$x$', fontsize=16)
ax.arrow(0,0,0,1.0, **vector_options)
text(-0.1, 0.9, '$y$', fontsize=16)
ax.arrow(0.6,0,0,0.4, **avector_options)
text(0.25, 0.025, r'$\vec{a}_x$', fontsize=16)
ax.arrow(0,0,0.6,0, **avector_options)
text(0.65, 0.15, r'$\vec{a}_y$', fontsize=16)
ax.arrow(0,0,0.6,0.4, **vector_options)
text(0.25, 0.25, r'$\vec{a}$', fontsize=16)
ax.arrow(0.25,0.6,0,0.3, **uvector_options)
text(0.45, 0.625, '$\hat{i}$', fontsize=16)
ax.arrow(0.25,0.6,0.3,0, **uvector_options)
text(0.3, 0.75, '$\hat{j}$', fontsize=16)
xlim(-0.1,1.1)
ylim(-0.1,1.1)
axis('off')
ax.set_aspect('equal')
ax = plt.axes()
ax.arrow(0,0,1.0,0, **vector_options)
text(0.9, -0.1, '$x$', fontsize=16)
ax.arrow(0,0,0,1.0, **vector_options)
text(-0.1, 0.9, '$y$', fontsize=16)
ax.arrow(0,0,0.6,0.4, **vector_options)
text(0.25, 0.25, r'$\vec{a}$', fontsize=16)
a = Arc(xy=(0,0), width=1, height=1, angle=0, theta1=0, theta2=35, linestyle='dashed')
ax.add_artist(a)
text(0.5, 0.12, r'$\theta$', fontsize=16)
ax.arrow(0.25,0.6,0,0.3, **uvector_options)
text(0.45, 0.625, '$\hat{i}$', fontsize=16)
ax.arrow(0.25,0.6,0.3,0, **uvector_options)
text(0.3, 0.75, '$\hat{j}$', fontsize=16)
xlim(-0.1,1.1)
ylim(-0.1,1.1)
axis('off')
ax.set_aspect('equal')
$\begin{cases} \hat{a}=3\hat{i}-4\hat{j}\\ \hat{b}=-2\hat{i}+2\hat{j} \end{cases}$. Calcular
(a) Qual o ângulo entre $\vec{a}$ e $\vec{b}$?
(b) Qual o ângulo entre $\vec{a}+2\vec{b}$ e o eixo x?
R.: (a) $\vec{a}\cdot\vec{b} = a_x b_x + a_y b_y = a b \cos \theta$. $a=\sqrt{3^2+4^2}=5$, $b=\sqrt{(-2)^2+2^2}=2\sqrt{2}$. Então, $\vec{a}\cdot\vec{b} = -6-8 = 5\cdot 2 \sqrt{2}\cos\theta$, e $\cos\theta=-\frac{7}{5\sqrt{2}}$, ou $\theta=170^o$
(b) $\vec{a}+2\vec{b} = 3\hat{i}-4\hat{j}+2(-2\hat{i}+2\hat{j}) = -\hat{i}$.
$\theta=180^o$.